EXERCISE 8.2

Find the coefficient of

1. $x^5 \text{ in } (x+3)^8$

2. a^5b^7 in $(a-2b)^{12}$.

Write the general term in the expansion of

3. $(x^2 - y)^6$

4. $(x^2 - yx)^{12}$, $x \neq 0$.

5. Find the 4th term in the expansion of $(x-2y)^{12}$.

6. Find the 13th term in the expansion of $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$, $x \neq 0$.

Find the middle terms in the expansions of

7. $\left(3 - \frac{x^3}{6}\right)^7$

8. $\left(\frac{x}{3} + 9y\right)^{10}$.

9. In the expansion of $(1 + a)^{m+n}$, prove that coefficients of a^m and a^n are equal.

10. The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r.

11. Prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$.

12. Find a positive value of m for which the coefficient of x^2 in the expansion $(1+x)^m$ is 6.

Miscellaneous Examples

Example 10 Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6$.

Solution We have $T_{r+1} = {}^{6}C_r \left(\frac{3}{2}x^2\right)^{6-r} \left(-\frac{1}{3x}\right)^r$

$$= {}^{6}C_{r} \left(\frac{3}{2}\right)^{6-r} \left(x^{2}\right)^{6-r} \left(-1\right)^{r} \left(\frac{1}{x}\right)^{r} \left(\frac{1}{3^{r}}\right)$$

$$= (-1)^{r-6} C_r \frac{(3)^{6-2r}}{(2)^{6-r}} x^{12-3r}$$

The term will be independent of x if the index of x is zero, i.e., 12 - 3r = 0. Thus, r = 4

Hence 5th term is independent of x and is given by $(-1)^4 {}^6\text{C}_4 \frac{(3)^{6-8}}{(2)^{6-4}} = \frac{5}{12}$.

Example 11 If the coefficients of a^{r-1} , a^r and a^{r+1} in the expansion of $(1+a)^n$ are in arithmetic progression, prove that $n^2 - n(4r+1) + 4r^2 - 2 = 0$.

Solution The $(r+1)^{th}$ term in the expansion is ${}^{n}C_{r}a^{r}$. Thus it can be seen that a^{r} occurs in the $(r+1)^{th}$ term, and its coefficient is ${}^{n}C_{r}$. Hence the coefficients of a^{r-1} , a^{r} and a^{r+1} are ${}^{n}C_{r-1}$, ${}^{n}C_{r}$ and ${}^{n}C_{r+1}$, respectively. Since these coefficients are in arithmetic progression, so we have, ${}^{n}C_{r-1} + {}^{n}C_{r+1} = 2.{}^{n}C_{r}$. This gives

$$\frac{n!}{(r-1)!(n-r+1)!} + \frac{n!}{(r+1)!(n-r-1)!} = 2 \times \frac{n!}{r!(n-r)!}$$
i.e.
$$\frac{1}{(r-1)!(n-r+1)(n-r)(n-r-1)!} + \frac{1}{(r+1)(r)(r-1)!(n-r-1)!}$$
or
$$\frac{1}{(r-1)!} \frac{1}{(n-r-1)!} \left[\frac{1}{(n-r)(n-r+1)} + \frac{1}{(r+1)(r)} \right]$$

$$= 2 \times \frac{1}{(r-1)!} \frac{1}{(n-r-1)![r(n-r)]}$$
i.e.
$$\frac{1}{(n-r+1)(n-r)} + \frac{1}{r(r+1)} = \frac{2}{r(n-r)},$$
or
$$\frac{r(r+1)+(n-r)(n-r+1)}{(n-r)(n-r+1)r(r+1)} = \frac{2}{r(n-r)}$$
or
$$r(r+1)+(n-r)(n-r+1)=2(r+1)(n-r+1)$$
or
$$r^2+r+n^2-nr+n-nr+r^2-r=2(nr-r^2+r+n-r+1)$$

or
$$n^2 - 4nr - n + 4r^2 - 2 = 0$$

i.e., $n^2 - n(4r + 1) + 4r^2 - 2 = 0$

Example 12 Show that the coefficient of the middle term in the expansion of $(1 + x)^{2n}$ is equal to the sum of the coefficients of two middle terms in the expansion of $(1 + x)^{2n-1}$.

Solution As 2n is even so the expansion $(1 + x)^{2n}$ has only one middle term which is

$$\left(\frac{2n}{2}+1\right)^{\text{th}}$$
 i.e., $(n+1)^{\text{th}}$ term.

The $(n + 1)^{\text{th}}$ term is ${}^{2n}C_n x^n$. The coefficient of x^n is ${}^{2n}C_n$ Similarly, (2n - 1) being odd, the other expansion has two middle terms,

$$\left(\frac{2n-1+1}{2}\right)^{\text{th}}$$
 and $\left(\frac{2n-1+1}{2}+1\right)^{\text{th}}$ i.e., n^{th} and $(n+1)^{\text{th}}$ terms. The coefficients of these terms are ${}^{2n-1}C_{n-1}$ and ${}^{2n-1}C_n$, respectively.

$$^{2n-1}C_{n-1} + ^{2n-1}C_n = ^{2n}C_n$$
 [As $^{n}C_{r-1} + ^{n}C_r = ^{n+1}C_r$]. as required.

Example 13 Find the coefficient of a^4 in the product $(1 + 2a)^4 (2 - a)^5$ using binomial theorem.

Solution We first expand each of the factors of the given product using Binomial Theorem. We have

$$(1+2a)^4 = {}^4\mathbf{C}_0 + {}^4\mathbf{C}_1 (2a) + {}^4\mathbf{C}_2 (2a)^2 + {}^4\mathbf{C}_3 (2a)^3 + {}^4\mathbf{C}_4 (2a)^4$$

$$= 1+4(2a)+6(4a^2)+4(8a^3)+16a^4.$$

$$= 1+8a+24a^2+32a^3+16a^4$$
and $(2-a)^5 = {}^5\mathbf{C}_0 (2)^5 - {}^5\mathbf{C}_1 (2)^4 (a) + {}^5\mathbf{C}_2 (2)^3 (a)^2 - {}^5\mathbf{C}_3 (2)^2 (a)^3$

$$+ {}^5\mathbf{C}_4 (2) (a)^4 - {}^5\mathbf{C}_5 (a)^5$$

$$= 32-80a+80a^2-40a^3+10a^4-a^5$$
Thus $(1+2a)^4 (2-a)^5$

$$= (1 + 8a + 24a^2 + 32a^3 + 16a^4) (32 - 80a + 80a^2 - 40a^3 + 10a^4 - a^5)$$

The complete multiplication of the two brackets need not be carried out. We write only those terms which involve a^4 . This can be done if we note that a^r . $a^{4-r} = a^4$. The terms containing a^4 are

$$1(10a^4) + (8a)(-40a^3) + (24a^2)(80a^2) + (32a^3)(-80a) + (16a^4)(32) = -438a^4$$

Thus, the coefficient of a^4 in the given product is -438.

Example 14 Find the r^{th} term from the end in the expansion of $(x + a)^n$.

Solution There are (n + 1) terms in the expansion of $(x + a)^n$. Observing the terms we can say that the first term from the end is the last term, i.e., $(n + 1)^{th}$ term of the expansion and n + 1 = (n + 1) - (1 - 1). The second term from the end is the n^{th} term of the expansion, and n = (n + 1) - (2 - 1). The third term from the end is the $(n - 1)^{th}$ term of the expansion and n - 1 = (n + 1) - (3 - 1) and so on. Thus r^{th} term from the end will be term number (n + 1) - (r - 1) = (n - r + 2) of the expansion. And the $(n - r + 2)^{th}$ term is ${}^{n}C_{n-r+1}$ x^{r-1} a^{n-r+1} .

Example 15 Find the term independent of x in the expansion of $\left(\sqrt[3]{x} + \frac{1}{2\sqrt[3]{x}}\right)^{18}$, x > 0.

Solution We have
$$T_{r+1} = {}^{18}C_r \left(\sqrt[3]{x}\right)^{18-r} \left(\frac{1}{2\sqrt[3]{x}}\right)^r$$

$$= {}^{18}C_r x^{\frac{18-r}{3}} \cdot \frac{1}{2^r \cdot x^{\frac{r}{3}}} = {}^{18}C_r \frac{1}{2^r} \cdot x^{\frac{18-2r}{3}}$$

Since we have to find a term independent of x, i.e., term not having x, so take $\frac{18-2r}{3}=0$.

We get r = 9. The required term is ${}^{18}\text{C}_9 \frac{1}{2^9}$.

Example 16 The sum of the coefficients of the first three terms in the expansion of $\left(x - \frac{3}{x^2}\right)^m$, $x \ne 0$, m being a natural number, is 559. Find the term of the expansion containing x^3 .

Solution The coefficients of the first three terms of $\left(x - \frac{3}{x^2}\right)^m$ are mC_0 , (-3) mC_1 and 9 mC_2 . Therefore, by the given condition, we have

$${}^{m}C_{0} - 3 {}^{m}C_{1} + 9 {}^{m}C_{2} = 559$$
, i.e., $1 - 3m + \frac{9m(m-1)}{2} = 559$

which gives m = 12 (m being a natural number).

Now
$$T_{r+1} = {}^{12}C_r x^{12-r} \left(-\frac{3}{x^2}\right)^r = {}^{12}C_r (-3)^r \cdot x^{12-3r}$$

Since we need the term containing x^3 , so put 12 - 3r = 3 i.e., r = 3.

Thus, the required term is ${}^{12}C_3(-3)^3 x^3$, i.e., $-5940 x^3$.

Example 17 If the coefficients of $(r-5)^{th}$ and $(2r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find r.

Solution The coefficients of $(r-5)^{th}$ and $(2r-1)^{th}$ terms of the expansion $(1+x)^{34}$ are ${}^{34}C_{r-6}$ and ${}^{34}C_{2r-2}$, respectively. Since they are equal so ${}^{34}C_{r-6} = {}^{34}C_{2r-2}$

Therefore, either r - 6 = 2r - 2 or r - 6 = 34 - (2r - 2)

[Using the fact that if ${}^{n}C_{r} = {}^{n}C_{p}$, then either r = p or r = n - p]

So, we get r = -4 or r = 14. r being a natural number, r = -4 is not possible. So, r = 14.

Miscellaneous Exercise on Chapter 8

- 1. Find a, b and n in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.
- 2. Find a if the coefficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ are equal.
- 3. Find the coefficient of x^5 in the product $(1 + 2x)^6 (1 x)^7$ using binomial theorem.
- **4.** If a and b are distinct integers, prove that a b is a factor of $a^n b^n$, whenever n is a positive integer.

[Hint write $a^n = (a - b + b)^n$ and expand]

- 5. Evaluate $(\sqrt{3} + \sqrt{2})^6 (\sqrt{3} \sqrt{2})^6$.
- **6.** Find the value of $\left(a^2 + \sqrt{a^2 1}\right)^4 + \left(a^2 \sqrt{a^2 1}\right)^4$.
- 7. Find an approximation of $(0.99)^5$ using the first three terms of its expansion.
- 8. Find n, if the ratio of the fifth term from the beginning to the fifth term from the

end in the expansion of $\left(\sqrt[4]{2} + \frac{1}{\sqrt[4]{3}}\right)^n$ is $\sqrt{6}:1$.

- 9. Expand using Binomial Theorem $\left(1 + \frac{x}{2} \frac{2}{x}\right)^4$, $x \ne 0$.
- 10. Find the expansion of $(3x^2 2ax + 3a^2)^3$ using binomial theorem.

Summary

- ◆ The expansion of a binomial for any positive integral n is given by Binomial Theorem, which is $(a + b)^n = {}^nC_0a^n + {}^nC_1a^{n-1}b + {}^nC_2a^{n-2}b^2 + ... + {}^nC_{n-1}a.b^{n-1} + {}^nC_nb^n$.
- ◆ The coefficients of the expansions are arranged in an array. This array is called *Pascal's triangle*.
- ♦ The general term of an expansion $(a + b)^n$ is $T_{r+1} = {}^nC_r a^{n-r}$. b^r .
- In the expansion $(a + b)^n$, if *n* is even, then the middle term is the $\left(\frac{n}{2} + 1\right)^{th}$

term. If *n* is odd, then the middle terms are $\left(\frac{n+1}{2}\right)^{th}$ and $\left(\frac{n+1}{2}+1\right)^{th}$ terms.

Historical Note

The ancient Indian mathematicians knew about the coefficients in the expansions of $(x + y)^n$, $0 \le n \le 7$. The arrangement of these coefficients was in the form of a diagram called *Meru-Prastara*, provided by Pingla in his book *Chhanda shastra* (200B.C.). This triangular arrangement is also found in the work of Chinese mathematician Chu-shi-kie in 1303. The term binomial coefficients was first introduced by the German mathematician, Michael Stipel (1486-1567) in approximately 1544. Bombelli (1572) also gave the coefficients in the expansion of $(a + b)^n$, for n = 1, 2, ..., 7 and Oughtred (1631) gave them for n = 1, 2, ..., 10. The arithmetic triangle, popularly known as *Pascal's triangle* and similar to the *Meru-Prastara* of Pingla was constructed by the French mathematician Blaise Pascal (1623-1662) in 1665.

The present form of the binomial theorem for integral values of *n* appeared in *Trate du triange arithmetic*, written by Pascal and published posthumously in 1665.

